One Two
Sie sind hier: Startseite Bibliothek Bonner Meteorologische Abhandlungen (BMA) Palaeoenvironmental transfer functions in a bayesian framework with application to holocene climate variability in the Near East,

Palaeoenvironmental transfer functions in a bayesian framework with application to holocene climate variability in the Near East,


This thesis presents the development of statistical climatological-botanical transfer functions in order to provide reconstructions of Holocene climate variability in the Near East region. Two classical concepts, the biomisation as well as the indicator taxa approach, are translated into a Bayesian network. Fossil pollen spectra of laminated sediments from the Ein Gedi location at the western shoreline of the Dead Sea and from the crater lake Birkat Ram in the northern Golan serve as proxy data, covering the past 10000 and 6500 years, respectively. The climatological variables are winter temperature, summer temperature, and annual precipitation, obtained from the 0.5×0.5 degree climatology CRU TS 1.0. The Bayesian biome model is based on the three main vegetation territories, the Mediterranean, the Irano-Turanian, and the Saharo-Arabian territory, which are digitized on the same grid as the climate data. From their spatial extend, a classification in the phase space is described by estimating the conditional probability for the existence of a certain biome given the climate. These biome specific likelihood functions are modelled by a generalised linear model, including second order monomials of the climate variables. A statistical mixture model is applied to the biome probabilities as estimated by the Ein Gedi data, resulting in a posterior probability density function for the three dimensional climate state vector. The indicator taxa model is based on the distribution of 15 Mediterranean taxa. Their spatial extend allows to estimate the taxon specific likelihood functions. In this case, they are conditional probability density functions for the climate state vector given the existence of a certain taxon. In order to address the general problem of multivariate non-normally distributed populations, multivariate normal Copulas are used, which allow to create distribution functions with gamma as well as normal marginal distributions. Applying the model to the Birkat Ram data requires the derivation of the posterior distribution given the coexistence of the taxa found in the fossil spectrum. For both models, the prior densities are informative, using the recent climate mean and the largest expected Holocene variation as variance. The results are probabilistic reconstructions of the climate of the Holocene Near East in a Bayesian framework.